Introduction

Pitch perception of resolved complex tones can remain fairly accurate even when all harmonics are beyond the putative limits of phase locking $[8,4,1]$ Pitch perception of complex tones can also remain fairly accurate in the presence of complex tone maskers $[6,5,10]$.
both (1) complex tone maskers and (2) targets entirely beyoost tible with phase locking.

Overview - behavior
- Tested Low Freq ($\sim 1680-2800 \mathrm{~Hz}$) and High Freq ($\sim 7000-14000 \mathrm{~Hz}$) - Pitch discrimination - FODLs with and without single masker complex tone - Melody discrimination - Same-different identification for four-note melodies with and without single masker complex tone - Major/minor discrimination - Major-minor discrimination for simultaneous and arpeggiated (sequential) triads

Stimuli

- Targets: Complex tones in threshold-equalizing noise (TEN) $[7]$ and $10.5 \times$ nominal Fo)
Maskers: Complex tone
- All harmonics of Fo, bandppass iltereed (12ti-orcer zero-phase Butterworth, cutoffis at 4x
and $12 \times$ nominal F) Frequency range:
- Low Freq (nominal F0 $=280 \mathrm{~Hz} \pm 10 \%$ rove)
- High Freq (nominal $\mathrm{Fo}=1400 \mathrm{~Hz} \pm 10 \%$ rove)
- Durations:

Pitch \& melody discrimination - 350 ms per tone

- Major/minor discrimination (triads) -750 ms (short) 2250 ms (long)
- Major/minor discrimination (arpeggios $)-125$ ms per tone (short) ,

Major/minor discrimination (arpeggiss) -125 ms per tone (short), 375 ms per tone (long)
evels:
Pited discrimination
in ERZ
ind
$-50 \pm 3 \mathrm{~dB}$ SPL per component (prefiltering), TEN at 40 dB SPL Melody \& major/minor discrimination
TEN at 43 d S SPL in ERB around 1 kH

Methods

- Participants: Young normal-hearing listeners
$-\leq 20 \mathrm{~dB} \mathrm{HL}$ at audiometric frequencies from $250 \mathrm{~Hz}-8 \mathrm{kHz}, ~$
.$\leq 20 \mathrm{~dB}$ HL a
- Audibility - Masked thresholds in TEN $\leq 50 \mathrm{~dB}$ SPL for pure tones at 16 and 18 k
- Pith - FDDLs $\leq 6 \%$ at 280 Hz and $\leq 12 \%$ at 1400 Hz for stimulus without TEN - Melodies $-\geq 70 \%$ correct for melody discrimination for 280 Hz lowpass-filtered melodies Data collection
FoDLs measured with 7 -up---down adaptive staircases per condition
Melody and major/minor discrimination measured with 10 blocks of 25
Acknowledgements
- This research was funded by a UMN College of Liberal Arts Craduate Fellowship awarded to
D.
D.G., NIH R Roi DCoos216 awarded to A.J... and NSF NRT-UtBB174815

Bibliography

Pitch perception of concurrent high-frequency complex tones

Modeling with auditory nerve simulations

Paniel R. Guest and Andrew J. Oxenham niversity of Minnesota, Department of Pychology, Auditory Perception and Cognition Lab

Overview - modeling			
[1] Simulate auditory nerve responses for each stimulus configuration	[2] Estimate F0DLs for each set of responses	[3] Scale ideal observer F0DLs to behavioral range	[4] Transform F0DLs into percent correct for music tasks
- Firing rates from auditory nerve model of Zilany et al. [11] - 80 CFs from $0.20-20 \mathrm{kHz}$, sampling rate of 300 kHz - Mixture of 60% HSR, 20% MSR, and 20% LSR fibers Time-CF firing rate response for ISO stimulus	- Model population activity of auditory nerve as joint distribution of nonhomogeneous Poisson processes [3, 9] - Assume observer uses average response over many masker waveforms as template to assess competing hypotheses - Derive suboptimal "smart" observer by applying this constraint to form of optimal observer that has access to individual masker waveforms [3] $\operatorname{JND}_{F_{0}}=\left(\frac{\left(\sum_{i} \int_{0}^{T} \frac{1}{\bar{r}_{i}\left(t F_{0}\right)}\left[\frac{\partial \bar{r}_{i}\left(t \mid F_{0}\right)}{\partial F_{0}}\right]^{2} d t\right)^{2}}{\sum_{i} \int_{0}^{T} \frac{1}{\bar{r}_{i}\left(t F_{0}\right)}\left[\frac{\partial \bar{r}_{i}\left(t F_{0}\right)}{\partial F_{0}}\right]^{2} d t+\operatorname{var}_{w}\left(\sum_{i} \int_{0}^{T} \frac{\partial \bar{r}_{i}\left(t \mid F_{0}\right)}{\partial F_{0}} \frac{r_{i}\left(t F_{0}, w\right)}{r_{i}\left(t \mid F_{0}\right)} d t\right)}\right)$ Details - r_{i} - firing rate of i-th nerve fiber w - index for random masker waveforms - $\overline{r_{i}}$ - firing rate of i-th nerve fiber averaged across random stimulus waveforms Intuitions - Change in firing rate w/ respect to F_{0} - Variance due to Poisson randomness - Variance due to randomness of	- Use F0DL data from previous experiment [2] - Estimate scaling factors to match model F0DLs to behavior - Perform separately for Low Freq and High Freq, separately for rate-place and all-information - Predict behavioral F0DLs as scaled copy of estimated model F0DLs $\text { F0DL } \text { predicted }=10^{\log _{10}\left(\mathrm{FODL}_{\text {model }}\right)+\zeta}$	- Use predicted F0DLs as measure of internal noise for encoding notes in 10000 simulated trials of melodies and triads - Melodies: Respond same if encodings of notes in two melodies are the same, respond different otherwise - Major/minor: Respond with the key of the nearest triad in 2 D interval space to encoded intervals

Results - Melody discrimination

Results — Major/minor discrimination

