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Introduction

• Pitch perception of resolved complex tones can remain fairly accurate even
when all harmonics are beyond the putative limits of phase locking [8, 4, 1].

• Pitch perception of complex tones can also remain fairly accurate in the
presence of complex tone maskers [6, 5, 10].

• However, is is unknown whether accurate pitch perception is possible with
both (1) complex tone maskers and (2) targets entirely beyond the limits of
phase locking.

Overview — behavior

• Tested Low Freq (∼ 1680-2800 Hz) and High Freq (∼ 7000-14000 Hz)
•Pitch discrimination

• F0DLs with and without single masker complex tone
•Melody discrimination

• Same-different identification for four-note melodies with and without single masker
complex tone

•Major/minor discrimination
• Major-minor discrimination for simultaneous and arpeggiated (sequential) triads

Stimuli

•Targets: Complex tones in threshold-equalizing noise (TEN) [7]
• All harmonics of F0, bandpass filtered (12th-order zero-phase Butterworth, cutoffs at 5.5×
and 10.5× nominal F0)

•Maskers: Complex tones
• All harmonics of F0, bandpass filtered (12th-order zero-phase Butterworth, cutoffs at 4×
and 12× nominal F0)

•Frequency range:
• Low Freq (nominal F0 = 280 Hz ± 10% rove)
• High Freq (nominal F0 = 1400 Hz ± 10% rove)

•Durations:
• Pitch & melody discrimination — 350 ms per tone
• Major/minor discrimination (triads) — 750 ms (short), 2250 ms (long)
• Major/minor discrimination (arpeggios) — 125 ms per tone (short), 375 ms per tone (long)

•Levels:
• Pitch discrimination — 50 ± 3 dB SPL per component (pre-filtering), TEN at 40 dB SPL
in ERB around 1 kHz

• Melody & major/minor discrimination — 55 ± 3 dB SPL per component (pre-filtering),
TEN at 43 dB SPL in ERB around 1 kHz

Methods

•Participants: Young normal-hearing listeners
•≤ 20 dB HL at audiometric frequencies from 250 Hz - 8 kHz

•Screening:
• Audibility — Masked thresholds in TEN ≤ 50 dB SPL for pure tones at 16 and 18 kHz
• Pitch — F0DLs ≤ 6% at 280 Hz and ≤ 12% at 1400 Hz for stimulus without TEN
• Melodies — ≥ 70% correct for melody discrimination for 280 Hz lowpass-filtered melodies
• Major/minor — ≥ 70% correct for triad discrimination for lowpass-filtered 280 Hz triads

•Data collection
• F0DLs measured with 7 1-up-3-down adaptive staircases per condition
• Melody and major/minor discrimination measured with 10 blocks of 25 trials per condition
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Overview — modeling

[1] Simulate auditory nerve responses for
each stimulus configuration [2] Estimate F0DLs for each set of responses [3] Scale ideal observer F0DLs to

behavioral range
[4] Transform F0DLs into percent correct for

music tasks

• Firing rates from auditory nerve model of Zilany et al. [11]
• 80 CFs from 0.20 - 20 kHz, sampling rate of 300 kHz
• Mixture of 60% HSR, 20% MSR, and 20% LSR fibers
Time-CF firing rate response for ISO stimulus

Lag-CF autocorrelation of response for ISO
stimulus

• Model population activity of auditory nerve as joint distribution of
nonhomogeneous Poisson processes [3, 9]

• Assume observer uses average response over many masker waveforms as
template to assess competing hypotheses
• Derive suboptimal “smart” observer by applying this constraint to form of
optimal observer that has access to individual masker waveforms [3]
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Details
• ri — firing rate of i-th nerve fiber
• w — index for random masker

waveforms
• r̄i — firing rate of i-th nerve fiber,

averaged across random stimulus
waveforms

Intuitions
• Change in firing rate w/ respect to
F0

• Variance due to Poisson randomness
• Variance due to randomness of

masker waveforms

• Use F0DL data from previous experiment [2]
• Estimate scaling factors to match model F0DLs to behavior
• Perform separately for Low Freq and High Freq,

separately for rate-place and all-information
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Predicted F0DLs vs data −−− ISO only

• Predict behavioral F0DLs as scaled copy of estimated
model F0DLs

F0DLpredicted = 10log10(F0DLmodel)+ζ

• Use predicted F0DLs as measure of internal noise for encoding
notes in 10000 simulated trials of melodies and triads

• Melodies: Respond same if encodings of notes in two melodies
are the same, respond different otherwise

• Major/minor: Respond with the key of the nearest triad in
2D interval space to encoded intervals

Results — Pitch discrimination
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F0DLs (model vs. data)

• F0 discrimination significantly worse at High
Freq and in presence of spectrally
overlapping maskers

1 All-information observer accounts poorly for effect of
masker on F0DLs

2 Rate-place observer accounts better for effect of
masker on F0DLs

Results — Melody discrimination
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Melody discrimination (model vs. data)

• Melody discrimination significantly worse at
High Freq and in presence of spectrally
overlapping maskers

1 Model overestimates performance, may suggest that
non-peripheral limitations on melody discrimination
play important role
• Elements of paradigm that were not modeled (e.g.,
transposition) may also explain some portion of gap

Results — Major/minor discrimination
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Major/minor discrimination (model vs. data) • Listeners could not perform major/minor
discrimination for High Freq triads

• Some listeners could perform major/minor
discrimination of long High Freq arpeggios

1 Models predict long triads should be discriminable at
Low Freq and High Freq, but listeners could only
discriminate Low Freq triads

2 All-information model predicts much larger benefit of
duration than rate-place model — effect of duration in
behavioral data unclear


