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Overview

No deficit in ripple detec�on/discrimina�on at high frequencies

Modeling

Template-based models used to es�mate thresholds- Level discrimina�on and AM detec�on vary li�le 
as a func�on of frequency [1, 2]

- However, both of these tasks are simple and can 
be performed on the basis of cues from a single 
frequency channel / auditory-nerve fiber

- Whiteford et al. (2020) [3] recently showed that 
detec�ng incoherence in the modulator phases of 
two SAM tones worsened at high carrier 
frequencies

- Are similar deficits seen at high frequencies in 
other tasks thought to depend on cross-frequency 
comparisons?

Methods
- Measured psychophysical performance at low 
frequencies and high frequencies in mul�ple tasks

- Some tasks were designed to be possible using 
informa�on only from a single channel (level 
discrimina�on, ripple detec�on)

- Other tasks were designed to require informa�on 
from mul�ple frequency channels (profile analysis, 
ripple direc�on discrimina�on)

- We then related psychophysical performance to 
simula�ons of auditory-nerve responses [3]  

Key ques�ons

S�muli

- Random-phase log-spaced 
complex tones

- Frequencies spaced from 
0.6-1.6 kHz (low freq) or 6 to 
16 kHz (high freq)

- Variable number of 
components (3, 5, 9, or 15)

- Either ...
   - fixed pedestal level of 60   
   dB SPL (level discrimina�on) 

   - random pedestal level over 
   50-70 dB SPL (profile 
   analysis)

- 350 ms in dura�on 

- Sum of 300 random-phase 
SAM tones

- Ripple rate of 2 Hz

- Ripple density of 4 cycles/
octave

- Log-spaced carriers from 0.5 
18 kHz at 45 dB SPL per-
component 

- Bandpass filtered from 
0.6-1.6 kHz (low freq) or 6 to 
17 kHz (high freq)

- 1000 ms in dura�on 
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Figure 1: Le� panel. Normalized log-power spectra for reference 
and target s�muli in the level discrimina�on task (top) or profile 
analysis task (bo�om). Right panel. Group-average and individual 
thresholds for the level discrimina�on task (n=2, top) and profile 
analysis task (n=2, bo�om). Arrows indicate data from 
corresponding condi�ons from [4]. Data are reported in units of 
signal re: standard (SRS; 20 log10 [ΔA/A]).

Figure 2: Le� panel. Log-power spectrograms for reference and 
target s�muli in the ripple detec�on task (top) or ripple direc�on 
discrimina�on task (bo�om). Right panel. Group-average and 
individual thresholds for the ripple detec�on task (n=10, top) or 
ripple direc�on discrimina�on task (n=10, bo�om).
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Figure 3: Threshold predic�ons 
from the Mahalanobis-distance 
template model based on decoding 
AN average firing rates. Data are 
indicated with points and model 
predic�ons with dashed lines. 
Different fiber types, as indicated 
by line style, yielded differing 
predic�ons.    

- Model from [3] 
- 99 CFs log-spaced  
between s�mulus 
edge frequencies

- Model from [5] 
- Parameters 
matching [6] 

- Model from [5]
- Parameter 
matching [6] 
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Figure 4: Thresholds as above, but 
based on decoding firing rates in 
the inferior colliculus. In the panels 
to the le�, different dashed lines 
show predic�ons corresponding to 
parameter sets used in [5] to 
achieve nominal BMFs of 50, 100, 
and 150 Hz. 

In the panels below, the inhibitory 
delay �me was fixed at 4 ms and 
the excitatory and inhibitory �me 
constants were swept over a range 
from 0.5 to 8 ms. Results are 
shown for a subset of resul�ng 
combina�ons.
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- Q1: Can listeners perform profile analysis at high 
frequencies? 

- Q2: Can listeners perform ripple direc�on 
discrimina�on at high frequencies? 

- Q3: Are pa�erns of psychophysical performance 
related to auditory-nerve coding?

- A1: Listeners could not perform profile analysis 
at high frequencies (Figure 1)

- A2: Listeners could perform ripple direc�on 
discrimina�on at high frequencies (Figure 2) 

- A3: Template-based decoding of AN rates did 
not match behavioral trends in profile analysis 
(Figure 3) 

- In AN simula�ons, MSR and LSR fibers outperformed 
listeners; HSR fiber performance was much poorer 

- Shorter IC �me constants needed to match data 
rela�ve to similar simula�ons in [6]

- Future modeling will also explore representa�ons of 
ripple s�muli in AN / IC
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