Perception of voice gender in children's voices by cochlear implant users
Daniel Guest, Vahid Montazeri, Michelle Kapolowicz, Peter Assmann
The University of Texas at Dallas, School of Behavioral and Brain Sciences

When listening to the speech of children - What acoustic cues do listeners use to identify the gender of the talker? - How does age perception connect to voice gender perception (VGP)? - What happens when these cues are distorted or eliminated, as occurs in cochlear implant (CI) processing? Background - Acoustic cues of voice gender Acoustic cue manipulation paradigms can reveal which cues listeners use [2, 5, 9] - Fundamental frequency (F0) and formant frequencies (FFs) are key [5] - However, F0 and FFs are not the only cues listeners use [2, 9] - Voice gender in children's speech and the role of age perception In children, average F0 and FFs vary systematically with age as well as gender (see Figure 1) - Previous research showed accurate age perception plays an important role [3] Relatively accurate age perception has been demonstrated in children's speech [1] - VGP by CI users - CI users have limited VGP abilities [4, 7] Poor VGP possibly due to limited access to F0 and FFs [7, 4] - Good temporal resolution could help CI users use F0 in VGP [4] Good spectral resolution could help CI users use FFs in VGP [4] - Significance VGP tasks may be useful to measure availability of spectrotemporal cues in CI users [8] - Talker identity cues play a role in speech perception Methods - Stimuli: /hVd/ syllables spoken by children from the North Texas area (age range: 5-18 years, medial vowels: /i/, /a/, /u/)

Figure 1: Mean F0, geometric mean of first three formants (GMFF) Values averaged across talkers and tokens within each gender. Error bars show ± 1 standard error of the mean.
Task: Participants listened to isolated syllables presented in randomized order and made two responses: (1) Voice Gender (two-alternative forced choice) and

- Acoustic Cue Conditions: STRAIGHT vocoder [6] used to scale F0 contours and/or FF contours to opposite-sex averages at each talker age level $\begin{array}{ll}\text { Unswapped } & \text { Original Fo and FFs } \\ \text { FF Swaped } \\ \text { Orimial Fo, scaled FFs }\end{array}$
$\begin{array}{ll}\text { Unswapped } & \text { Orinal Fo, scaled FFs } \\ \text { FF Swapped } & \text { Original Fol } \\ \text { F0 Swapped } & \text { Scale FO, original FFs }\end{array}$
F0 Swapped Scaled FO , original FF
FOFF Swapped Scaled FO and FFs
Experiments:
NH 81 normal hearing (NH) adults
VO 37 NH adults attendin to
VO 37 NH adults attending to tone vocoder CI simulation
Age

Other Details:
NH and VO listeners completed one condition each
8 uhanes completed a reduced set including all 4 conditions suing only best implanted ear Stimuli presented monaurally over headphones (NH Listenens) or in tree field (CI) listeners)

Model of VGP Data
Type: Multilevel logistic (GLRM) mode
Predictors: Talker age, talker gender, age estimation error, acoustic cue condition, experiment (and interactions)
Implementation: Implemented via Implementation: Implemented via lmet package in R Correct vice eender responses ooded with a 1 and incorrect
responsess with a a
 from listener j to a stimulus spoken by talker k

- Intercepts were allowed to vary between listeners and talkers $\left.\operatorname{logitith}_{i(\xi k)}\right)=X_{i(j k)} \beta+u_{j}+v_{k} \mid u_{j} \sim N\left(0, \sigma_{\left.\sigma_{i}^{2}\right)}^{2}, v_{k} \sim N\left(0, \sigma_{k}^{2}\right)\right.$
\qquad Questions: To what extent did particular listeners make correct voice gender responses? To what extent was the voice gender aricuar takkers correctly identifiee?

Figure 4: Median estimates of random intercepts fo talkers and listeners
Error bars indicate ± 2 standard deviations. Grey intervals indi-

- More variation explained

Figure 2: Proportion gender correct acoustic cue condition and talker gender, while line color indicates listener group.
Majority of male talkers correctly identified

CI listeners answerd female for most younger talkers
. Explains why CII listeners had higher ropootion - Explains why CI listeners had higher proportion
gender correct than NHH listeness for female talker Listeners answered male for many older females in
Unswasped Unswapped
Across taker

Effect of caoustic cue condition interacted with talker age
talker gender, and experinent
Figure 3: Median age perceived Each panel shows a different combination of acoustic cue condition and talker gender, while line
color indicates listener group. Error bers color indicates listener group. Error bars indicate VOer and lower quartiles.
talkers Most listeners underestimated age of older female talkers
in Unswapped Across talker age, talker gender, and experiment, scaling
F0 had larger effect than scaling FFs
 Results in Unswapped mirtor reesults for opposite talker
gender in Fofr
Correspondence beptween errors in VGP and errors in age

Summary and Conclusions

For NH listeners

Accurate agep pereption tied to accurate VGP
Older emale talleps

For VGP of
- CI liseners

Depended more on Fo than on FFs in VGP task Younger male talkers frequently misisidentified as older female talleres - Eutrorsin inkely

For NH listeners, sceling both cues did not tii VGP of oder male talles

Reference

Model Analysis (continued)

