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ABSTRACT:
Power-law adaptation is a form of neural adaptation that has been recently implemented in a popular model of the

mammalian auditory nerve to explain responses to modulated sound and adaptation over long time scales. However,

the high computational cost of power-law adaptation, especially for longer simulations, means it must be approxi-

mated to be practically usable. Here, a straightforward scheme to approximate power-law adaptation is presented,

demonstrating that the approximation improves on an existing approximation provided in the literature. Code that

implements the new approximation is provided. VC 2024 Acoustical Society of America.
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I. INTRODUCTION

This letter to the editor suggests a new strategy to

improve the speed and accuracy of the popular mammalian

auditory-nerve (AN) model of Zilany et al. (2014), hereafter

referred to as the ZBC model. The model has gained popu-

larity because of its high level of detail and fidelity to physi-

ological data, but such detail comes at a substantial

computational cost, which can dissuade users from applying

the model to large-scale problems. One notable source of

computational cost in the ZBC model is power-law adapta-

tion (PLA) (Drew and Abbott, 2006; Zilany et al., 2009), a

form of neural adaptation that strikes a balance between

adaptation with infinite memory of past responses, or perfect

adaptation, and adaptation with a fixed time constant and

exponential forgetting of past responses, or exponential adap-

tation (EA) (Drew and Abbott, 2006). Including PLA in the

model improved predictions of AN response features such as

synchrony to sinusoidally amplitude modulated (SAM)

stimuli (Zilany et al., 2009). This letter describes a strategy for

approximating PLA that is as fast as previous approximations

while improving accuracy over a wide range of time scales.

II. DERIVATION OF THE PLA

Throughout, we denote scalar-valued variables in italic
and vector-valued variables in bold italic. In models of

adaptation, the time-varying output rate, rðtÞ, is described as

the half-wave rectified difference between an input rate,

s tð Þ, and the output of an integrator, IðtÞ:

r tð Þ ¼ max 0; s tð Þ � I tð Þð Þ: (1)

In PLA, the integrator is governed by power-law temporal

dynamics:

I tð Þ ¼
ðt

0

r uð Þ
t� uþ b

du: (2)

Here, b is a parameter with units of time that governs the rate of

adaptation (Drew and Abbott, 2006). It will be of use to note that

Eq. (2) can be expressed as convolution (*) with a power-law kernel:

I tð Þ ¼ r tð Þ � 1

tþ b
: (3)

Here the focus is on how to efficiently compute PLA.

We adopt Big O notation (Knuth, 1976) to characterize

PLA’s computational complexity, or how many elementary

operations are required to compute PLA for an input of n
samples. O 1ð Þ indicates that complexity is a constant factor

(i.e., it does not depend on n), O nð Þ indicates that complex-

ity is a linear function of n, and O n2ð Þ indicates that com-

plexity is a quadratic function of n. Direct calculation of I tð Þ
for all time steps using Eq. (2) has complexity Oðn2Þ, the

same as general one-dimensional convolution. That is, the

cost of computing PLA grows superlinearly with the number of

samples in the simulation, limiting PLA to short simulations at low

sampling rates, for which the factor n2 does not grow too large.

To address this problem, we can seek to replace direct

implementation of Eq. (3) with some function that approxi-

mates Eq. (3) but has complexity less than Oðn2Þ. Infinite

impulse response (IIR) filters have complexity OðnÞ, so we

can reframe our goal as finding an IIR filter that has an

impulse response approximating the power-law kernel in

Eq. (3). The same approach was adopted in previous ver-

sions of the ZBC model, which approximates convolution in

Eq. (3) as an IIR filter with numerically optimized weights1

(one 10th-order filter for the “slow” PLA pathway and one

6th-order filter for the “fast” PLA pathway). Hereafter, this

scheme is called “ZBC 2009/14 PLA” to indicate the approx-

imation scheme in Zilany et al. (2009) and provided in the

model code of Zilany et al. (2009) and Zilany et al. (2014).a)Email: Daniel_Guest@urmc.rochester.edu
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ZBC 2009/14 PLA requires numerical optimization of the

filter coefficients for specific combinations of b and sampling

rate fs, and the coefficients thus cannot readily be translated to

simulations with different values of b or fs. Moreover, as

expected, the particular coefficients provided by Zilany et al.
(2009) yield poor predictions of PLA for long simulations

where n� fs. An alternative approach is hinted at by Drew

and Abbott (2006), who point out that “… we can mimic

power-law adaptation, at least over a finite time interval, using

a [sum] of exponential functions” and argue that power-law

dynamics could in fact arise from multiple underlying pro-

cesses with exponential dynamics and a range of time con-

stants (see also Newman, 2005). This approach suggests

approximating the power-law kernel, f tð Þ ¼ 1=ðtþ bÞ; as the

sum of many exponential kernels of the form

g tð Þ ¼
XN�1

i¼0

gi tð Þ ¼
XN�1

i¼0

wi exp �t=sið Þ: (4)

Convolution with a kernel of the form w exp �t=sð Þ can

be efficiently implemented via a first-order IIR filter with

the difference equation

y n½ � ¼ w x n½ � þ d y n� 1½ �: (5)

Filters are as in Eq. (5), where 0 < d < 1; are lowpass filters

with a 3-dB cutoff frequency of f ¼ 1=2ps Hz. The decay

coefficient, d, can be calculated as d ¼ exp �1=fssð Þ. Note

that we set the coefficients for x such that the filter has an

impulse response that peaks at w at time t ¼ 0, rather than hav-

ing unity gain at direct current (dc) making it easier to see the

connection between this filter and Eq. (4). We can efficiently

compute convolution with a weighted sum of exponentials via

a set of these filters implemented in parallel. If we select w and

s appropriately, so as to match the combined impulse response

of our set of filters with the power-law kernel f tð Þ, we can in

turn approximate power-law adaptation, with O nð Þ complexity.

Bochud and Challet (2007) provide a useful starting point

for analytic heuristics for w and s. The authors point out that a

given exponential can approximate a power-law function rea-

sonably well over a corresponding time scale (i.e., order of

magnitude of time) near s but makes little contribution for

time scales beyond that due to the nature of exponential decay.

Figure 1(A) displays an approximation of f tð Þ by exp �t=bð Þ
on linear axes. On log-log axes [Fig. 1(B)], the point made by

Bochud and Challet (2007) is clear: For time t < b, the

approximation is reasonably good, and by time t ¼ b the approx-

imation differs from the target only by a factor of e=2 (i.e., still

non-negligible). Beyond approximately 5b, however, the exponen-

tial function’s value is nearly zero, whereas the power-law function

is still (relatively) large. This phenomenon can be seen on log-log

axes as an obvious difference in slope: for t� b, the exponential

function has a steep and accelerating slope, whereas the power-

law function has its signature straight-line slope, which yields its

characteristic “long tail.”

These observations and the forms of each function on

log-log axes suggest that a sum of exponentials with time

constants spaced evenly in log time and with weights

inversely proportional to their time constants could provide a

reasonable approximation of the power-law kernel (Bochud and

Challet, 2007) [Fig. 1(C)]. Each exponential contributes

substantially only for t � 5s, and their sum, weighted with

decreasing weights for longer s, yields a match to the slope of

the power-law function at long times. The approximation is

imperfect, perhaps most importantly because the constant slope

of the power-law kernel on the log-log axes for times well

beyond can only be well approximated by exponentials up to

about the longest s used. At longer times, the lack of exponen-

tial functions with correspondingly long time constants results

in a systematic truncation error [e.g., Fig. 1(C) for t �1� 101].

We adopted two strategies for selecting w, one based on

a heuristic adjustment of the weights and another based on

numerical optimization. In both cases, we start with

si ¼ b� 10i=e (6)

for i ¼ 0 to N � 1. Note that this formula indicates time con-

stants starting at b and increasing in increments of 1=e deca-

des, thus each decade of time is approximated by about e
(i.e., 2–3) exponentials. The ratio 1=e is a rule of thumb that

works well, with smaller values leading to systematic gaps

between adjacent exponentials, and larger values leading to

too much overlap between adjacent exponentials (Bochud

and Challet, 2007). The value of N=e then determines the

longest time constant used and thus the longest times that

can be simulated before the aforementioned truncation error

dominates. We set N ¼ 14, which yields a good approxima-

tion up to about 5 decades after b.

For the heuristic scheme, given time constants s, the

weights can be adjusted from wi ¼ 1=si, as in Fig. 1(C), to

wi ¼ c= si þ bð Þ, where

c ¼ 2b
XN�1

i¼0

1

si þ b
exp �b=sið Þ

 !�1

: (7)

Intuitively, the weights 1= si þ bð Þ reduce the amplitude of

exponentials with short time constants relatively more than

exponentials with long time constants, as compared to 1=si,

addressing the systematic overestimate of kernel amplitude

at early times. The factor c further adjusts the weights to

match f tð Þ and g tð Þ exactly at time t ¼ b. This heuristic gives

a surprisingly good fit over many time scales, only slightly

underestimating the kernel amplitude for very short times and

then again at somewhat longer times [Fig. 1(D), top row].

Next, we used numerical optimization to select optimal

values for w, starting from the initial estimate wi ¼ 1=si and

subject to a loss function consisting of the sum of squared

errors between log f tð Þð Þ and log g tð Þð Þ at 1000 query points

spaced evenly in log time from 1=fs to 105 b s. [fs was set to

10 kHz in our simulations to match the synapse stage of Zilany

et al. (2009).] This optimization was carried out in JULIA

(Bezanson et al., 2017) using Newton’s method via the

OPTIM.JL package (Mogensen and Riseth, 2018) with default

hyperparameters using forward-mode automatic differentiation

(Rall, 1986; Revels et al., 2016). Optimization was performed
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on the logarithm of the weights to accommodate the large scale

involved and to avoid the need to use parameter boundaries.

Numerically optimized weights yielded exceptionally accurate

predictions of the power-law kernel [Fig. 1(D), bottom row].

III. RESULTS

Two values of b are used in the ZBC model in the two

PLA pathways: 5 � 10�4 and 1 � 10�1 s. Power-law kernels

for these values of b were well approximated by both the

heuristic and optimized weight schemes [Fig. 1(D)]. The

values of the optimized weights are reported in Table I. Our

approximation scheme was about as efficient as ZBC 2009/

14 PLA, achieving the expected O nð Þ scaling behavior as

compared to true PLA’s O n2ð Þ scaling behavior [Fig. 1(E)].

To evaluate the approximation in terms of responses to

sound, we simulated high-spontaneous-rate AN responses to

sound with the Zilany et al. (2014) cat model using true

PLA or the different approximation schemes. Over the

course of a 100-s SAM tone, ZBC 2009/14 PLA matched

true PLA well in very early time windows (i.e., first several

hundred ms), but consistent with the advice of Zilany et al.
(2009) that ZBC 2009/14 PLA only be used for short simu-

lations, the match became progressively poorer in later time

windows [Fig. 1(F) and 1(G)]. This mismatch was the result

of ZBC 2009/14 PLA systematically underestimating the

FIG. 1. (Color online) (A) Value of the power-law kernel 1/(tþb) (red) or of the exponential kernel exp(�t/b) (black) where b¼ 0.01 s. (In this and other

figures, the peak amplitude of both kernels is normalized to 1 for ease of visualization and labeled in arbitrary units [a.u.]). The vertical gray line indicates b along

the time axis. (B) Same as (A), except on a log-log axis. (C) The power-law kernel in (A) (solid red) approximated with seven exponential functions with time con-

stants at every half decade starting at b and ending at 103 b and with weight wi equal to 1/si. The approximation is plotted in dashed gray; contributing exponentials

are plotted in solid lines below. (D) Value of the power-law kernel (red) for b = 5� 10�4 s (left column) or b = 1�10�1 s (right column) compared to the parallel-

exponential approximation (gray dashed) with heuristic weights (top row) or with optimized weights (bottom row). The loss metric described in Sec. II is printed in

the corner of each panel. (E) Compute time for the synapse stage in the ZBC model versus input stimulus duration. Error bars indicate 95% confidence intervals.

The thin black lines indicate predicted scaling between stimulus duration and compute time based on or complexity, adjusted vertically to underline the measure-

ments. (F) RMS error over time in a 200-ms rectangular sliding window for different approximation schemes in response to a SAM tone (carrier frequency¼CF¼ 10

kHz, modulation frequency¼ 10 Hz, modulation depth¼ 0 dB, level¼ 50 dB SPL). The dashed line indicates the heuristic weight scheme while the solid line shows

optimized weights. (G) Example high–spontaneous–rate responses using different methods for calculating PLA in different time windows (0–0.2 s or 9–9.2 s) and for dif-

ferent stimuli (from top to bottom): stimulus from C, 10-kHz pure tone at 50 dB SPL, Gaussian noise at 50 dB SPL overall level. The black trace at the top of each panel

shows the stimulus waveform. The model response under true PLA is shown in dashed black. Responses approximated with the new scheme are shown in cyan (dot-

ted¼ heuristic; solid¼ optimized), while responses approximated with ZBC 2009/14 PLA are shown in red.
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magnitude of adaptation in later time windows (i.e., approxima-

tion’s impulse response underestimated the “long tail” of the

power-law kernel). In contrast, our new approximation scheme

produced a more uniform error across time. The heuristic

weight scheme was slightly outperformed by ZBC 2009/14

PLA before �300 ms, but then systematically outperformed it

in later time windows, maintaining a constant moderate error

before worsening slightly in time windows later than �20 s. In

comparison, the numerically optimized weights yielded a nearly

perfect simulation of true PLA at all tested times up to 100 s.

IV. DISCUSSION

PLA is a form of neural adaptation that has been

observed in AN (van Gendt et al., 2020; Zilany et al., 2009)

but is computationally impractical to simulate directly in

most applications. We provide here a straightforward strat-

egy to approximate the convolution with a power-law kernel

that underlies PLA Eq. (3) with a set of simple IIR filters

implemented in parallel. The approximation should be most

helpful when simulating responses to long stimuli (e.g., con-

tinuous speech) or when high sampling rates are required to

avoid aliasing (Heinz et al., 2001) or due to technical con-

straints, such as simulating feedback pathways (Farhadi

et al., 2023). The approach is also portable, in that the opti-

mized weights can be applied to any value of b and the val-

ues of s can be computed on-the-fly for any sampling rate.

Future work could explore a number of fruitful directions.

First, better analytical strategies for determining parameter

values could be developed (e.g., Bochud and Challet, 2007).

Second, AN data used to fit PLA parameters could be reana-

lyzed to determine if a small number of exponential processes

might provide a better fit to the data than power-law adaptation.

Third, the approximation could be incorporated into the AN

model of Bruce et al. (2018). We focused on the Zilany et al.
(2014) model because its instantaneous rate output (which is

popular for modeling psychophysical data) is more suitable for

use than the equivalent output of the Bruce et al. (2018) model,

and because it served as the foundation of the recent efferent

model of Farhadi et al. (2023). However, the approximation

could be easily extended to other models that include PLA.
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required by the new approximation.
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TABLE I. Value of the weight parameter corresponding to each time con-

stant for numerically optimized parallel-exponential PLA, for either the

slow or fast PLA pathway.a

Coefficient number

Coefficient value for:

Slow pathway Fast pathway

1 1.05413 � 103 6.10664 � 100

2 2.35420 � 102 1.15590 � 100

3 3.51309 � 102 1.30960 � 100

4 9.90012 � 101 7.85696 � 10�1

5 5.51842 � 101 2.18355 � 10�1

6 2.89945 � 101 1.03448 � 10�1

7 6.55613 � 100 8.41393 � 10�2

8 6.55838 � 100 1.59636 � 10�3

9 1.15761 � 100 1.88867 � 10�2

10 9.95489 � 10�1 8.08962 � 10�4

11 3.58867 � 10�1 2.80610 � 10�3

12 1.57345 � 10�1 6.52993 � 10�4

13 1.04288 � 10�2 3.13954 � 10�5

14 8.77389 � 10�2 4.49067 � 10�4

aShown are the value of the weight parameter corresponding to each time

constant [calculated via Eq. (6) with N¼ 14] for numerically optimized

parallel-exponential PLA, for either the slow PLA pathway (b¼ 5 � 10�4

s) or fast PLA pathway (b¼ 1 � 10�1 s).
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