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Ideal-observer analysis of the effects of medial olivocochlear gain control 
on neural coding of sound level and amplitude modulation
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RESULTS
Peripheral compression and auditory-nerve (AN) saturation both 
impact rate codes for sound level (Heinz et al., 2001)  
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The medial olivocochlear 
(MOC) system may 
improve coding by 
reducing cochlear gain — 
but does it?
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Do reductions in cochlear gain improve coding 
of sound level or AM in noise?

Yes, gain reduction enhances level and AM coding 
when notched noise is present

Do reductions in cochlear gain improve coding 
of sound level or AM in quiet?

Do precursors used in behavioral studies likely 
activate the MOCR at the probe CF?

Unclear; predicted precursor effects depend on 
parameters that are not yet well constrained 

Computational model
Responses to acoustic stimuli simulated using modified version of 
Zilany, Bruce, and Carney (2014) model that includes an energy-
driven MOC reflex (MOCR; see QR codes for prior model posters)

Cochlear gain can be fixed at user-specified values or be updated 
dynamically based on energy-driven feedback loop 

Stimuli
Stimuli matched those used in several behavioral studies that may 
reflect efferent effects. All studies used precursor-probe design 
where precursors may activate the MOCR and enhance perception.
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Does our sound-driven model predict key 
behavioral trends?

If listeners do not use off-frequency listening, 
reductions in cochlear gain enhance coding of 
sound level and AM. 
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Amplitude modulation detection
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Data, Florentine et al. @ 2 kHz

Trendline, Kohlrausch et al. @ 5 kHz

On-CF single-channel thresholds

Population thresholds

On-CF single-channel thresholds

Population thresholds

Ideal-observer thresholds for 30-ms 6-kHz 
pure tone in quiet derived by Cramér–Rao 
lower-bound analysis (# fibers per CF = 
100). Level-discrimination thresholds (rate-
place code) are shown in the top row, 
while sinusoidal AM detection thresholds 
(spike-timing code) are shown in the 
bottom row; both show similar trends. 
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Simulated level-discrimination thresholds (Roverud and Strickland, 2015; top) or AM-detection thresholds  
(Almishaal et al., 2017; bottom) in notched noise (# fibers per CF = 100). The decision variable was average 
rate (level discrimination) or vector strength (AM detection) in the probe window. Sensitivity was determined 
for many ΔL/m values and then interpolated before identifying a threshold at d' = 1.  

Simulated reduction in cochlear gain during probe window for precursor stimuli from Roverud & 
Strickland (2015) versus probe level (noise spectrum level = 30 dB below probe level; frequency = 6 
kHz). We compare three parameter configurations: left, MOC effects are restricted to within-channel 
effects and strength was set to match contralateral acoustic stimulation physiology under anesthesia 
(Warren and Liberman, 1989); middle, intermediate; right, strength was increased and MOC effects 
spread over a tonotopic range indicated by off-freqeuncy data from Warren & Liberman (1989).
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Roverud and Strickland (2015)
• Task: Level discrimination in noise
• 30-ms pure-tone probes
• Narrowband (NBN) or notched-noise (NN)
• Short and long temporal configurations
• Varying SNRs and levels
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Three example configurations:
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Almishaal, Bidelman, and Jennings (2017)
• Task: AM detection in NN
• 50-ms SAM-noise probes
• Low-fluctuation-noise carriers
• NN precursor and simultaneous masker
• 50–85 dB SPL
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Yes! Our model shows qualitatively similar 
precursor effects as behavioral paradigms.
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Behavioral level-
discrimination thresholds 
(Roverud and Strickland, 
2015; Figure 6) or AM-
detection thresholds 
(Almishaal et al., 2017; Figure 
3 for a short versus long NN 
configuration. Model 
parameters were set to the 
"Strong and Wide" 
configuration (see parameter 
panel). Raw thresholds are 
shown on the left; the 
threshold improvement due 
to the longer precursor is 
shown on the right. Decision 
variables matched those used 
above, but here cochlear gain 
was determined based on the 
simulated MOCR and not fixed 
at a specific value. 
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Wojtczak, Klang, and Torunsky (2019)
• Task: AM detection in noise
• 40-ms SAM-tone probes
• Varied precursors
• 1 or 6 kHz carriers
• 50 Hz modulation rate
• Individualized SNRs
• 40, 60, or 80 dB SPL
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ASA 2025 poster

Simulations are consistent with the idea that efferent gain control enhances coding of 
sound level and amplitude modulation in noise at moderate levels (~40–70 dB SPL)

However, these effects only manifest in our efferent model when:

Future work will explore the impact of different decision variables and readout 
strategies and potential contributions of descending input from the midbrain to MOC

1) Off-frequency listening is restricted by noise maskers

2) The strength of the awake ipsilateral MOCR is greater than indicated
    by contralateral effects under anesthesia (Warren & Liberman, 1989)
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        → See comparison to behavioral data

        → Compare ideal-in-quiet to in-noise results

        → See underlying parameters

An MOCR strength 
parameter was 
calibrated to data from 
contralateral elicitors 
under anesthesia 
(Warren & Liberman, 
1989). For simulating 
awake human data with 
ipsilateral elicitors, a 
suitable value for the 
strength parameter is 
not immediately clear.

A parameter governing the 
tonotopic extent to which 
MOC activity in one channel 
can influence gain in other 
channels was also calibrated 
based on Warren & Liberman 
(1989). Preliminary 
simulations suggest that this 
span is broad (>> tuning 
bandwidth, < octave). Its 
value is uncertain but has  
influence on the effects of 
behavioral precursors.
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