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INTRODUCTION

Peripheral compression and auditory-nerve (AN) saturation both
impact rate codes for sound level (Heinz et al., 2001)
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METHODS

Stimuli

Stimuli matched those used in several behavioral studies that may
reflect efferent effects. All studies used precursor-probe design
where precursors may activate the MOCR and enhance perception.
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Almishaal, Bidelman, and Jennings (2017)

« Task: AM detection in NN
e 50-ms SAM-noise probes == Probe
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e NN precursor and simultaneous masker
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Wojtczak, Klang, and Torunsky (2019)

e Task: AM detection in noise
e 40-ms SAM-tone probes

e Varied precursors
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Computational model

Responses to acoustic stimuli simulated using modified version of
Zilany, Bruce, and Carney (2014) model that includes an energy-
driven MOC reflex (MOCR; see QR codes for prior model posters)

Cochlear gain can be fixed at user-specified values or be updated
dynamically based on energy-driven feedback loop
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RESULTS

Do reductions in cochlear gain improve coding
of sound level or AM in quiet?
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Amplitude modulation detection while sinusoidal AM detection thresholds
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- ; ottom row; both show similar trends.
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If listeners do not use off-frequency listening,
reductions in cochlear gain enhance coding of
sound level and AM.

Two key parameters to consider:
Overall strength Tonotopic "spread”
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Simulated reduction in cochlear gain during probe window for precursor stimuli from Roverud &
Strickland (2015) versus probe level (noise spectrum level = 30 dB below probe level; frequency = 6
kHz). We compare three parameter configurations: left, MOC effects are restricted to within-channel
eaects and strength was set to match contralateral acoustic stimulation physiolo%/ under anesthesia
(Warren and Liberman, 1989); middle, intermediate; right, strength was increased and MOC effects
spread over a tonotopic range indicated by off-freqeuncy data from Warren & Liberman (1989).
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|ldeal-observer analysis of the effects of medial olivocochlear gain control

This poster

Do reductions in cochlear gain improve coding
of sound level or AM in noise?
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Simulated level-discrimination thresholds (Roverud and Strickland, 2015; top) or AM-detection thresholds
(Almishaal et al., 2017; bottom) in notched noise (# fibers per CF = 100). The decision variable was average
rate (level discrimination) or vector strength (AM detection) in the probe window. Sensitivity was determined
for many AL/ m values and then interpolated before identifying a threshold at d’' = 1.
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Yes, gain reduction enhances level and AM coding
when notched noise is present

Does our sound-driven model predict key
behavioral trends?

Roverud and Strickland (2015), Figure 6
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Yes! Our model shows qualitatively similar
precursor effects as behavioral paradigms.

CONCLUSIONS

Simulations are consistent with the idea that efferent gain control enhances coding of
sound level and amplitude modulation in noise at moderate levels (~40-70 dB SPL%

— See comparison to behavioral data
However, these effects only manifest in our efferent model when:

1) Off-frequency listening is restricted by noise maskers
— Compare ideal-in-quiet to in-noise results

2) The strength of the awake ipsilateral MOCR is greater than indicated
by contrglateral effects under anesthesia (Warren & Liberman, 1989)
— See

Future work will explore the impact of different decision variables and readout
strategies and potential contributions of descending input from the midbrain to MOC



